Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results.
نویسندگان
چکیده
We study the performance of a previously proposed perturbation theory for the diffusion equation in frequency and time domains as they are known in the field of near infrared spectroscopy and diffuse optical tomography. We have derived approximate formulas for calculating higher order self- and mixed path length moments, up to the fourth order, which can be used in general diffusive media regardless of geometry and initial distribution of the optical properties, for studying the effect of absorbing defects. The method of Padé approximants is used to extend the validity of the theory to a wider range of absorption contrasts between defects and background. By using Monte Carlo simulations, we have tested these formulas in the semi-infinite and slab geometries for the cases of single and multiple absorbing defects having sizes of interest (d=4-10 mm, where d is the diameter of the defect). In frequency domain, the discrepancy between the two methods of calculation (Padé approximants and Monte Carlo simulations) was within 10% for absorption contrasts Deltamu(a)<or=0.2 mm(-1) for alternating current data, and usually to within 1 degrees for Deltamu(a)<or=0.1 mm(-1) for phase data. In time domain, the average discrepancy in the temporal range of interest (a few nanoseconds) was 2%-3% for Deltamu(a)<or=0.06 mm(-1). The proposed method is an effective fast forward problem solver: all the time-domain results presented in this work were obtained with a computational time of less than about 15 s with a Pentium IV 1.66 GHz personal computer.
منابع مشابه
Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. I. Theory.
We approach the perturbative solution to the diffusion equation for the case of absorbing inclusions embedded in a heterogeneous scattering medium by using general properties of the radiative transfer equation and the solution of the Fredholm equation of the second kind given by the Neumann series. The terms of the Neumann series are used to obtain the expression of the moments of the generaliz...
متن کاملDynamic Coupled Thermo-Viscoelasticity of a Spherical Hollow Domain
The generalized coupled thermo-viscoelasticity of hollow sphere subjected to thermal symmetric shock load is presented in this paper. To overcome the infinite speed of thermal wave propagation, the Lord-Shulman theory is considered. Two coupled equations, namely, the radial equation of motion and the energy equation of a hollow sphere are obtained in dimensionless form. Resulting equations are ...
متن کاملHyperstability of some functional equation on restricted domain: direct and fixed point methods
The study of stability problems of functional equations was motivated by a question of S.M. Ulam asked in 1940. The first result giving answer to this question is due to D.H. Hyers. Subsequently, his result was extended and generalized in several ways.We prove some hyperstability results for the equation g(ax+by)+g(cx+dy)=Ag(x)+Bg(y)on restricted domain. Namely, we show, under some weak natural...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملEstimation of the Domain of Attraction of Free Tumor Equilibrium Point for Perturbed Tumor Immunotherapy Model
In this paper, we are going to estimate the domain of attraction of tumor-free equilibrium points in a perturbed cancer tumor model describing the tumor-immune system competition dynamics. The proposed method is based on an optimization problem solution for a chosen Lyapunov function that can be casted in terms of Linear Matrix Inequalities constraint and Taylor expansion of nonlinear terms. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2010